Papers
Topics
Authors
Recent
2000 character limit reached

Reservoir Computing and Extreme Learning Machines using Pairs of Cellular Automata Rules (1703.05807v1)

Published 16 Mar 2017 in cs.NE

Abstract: A framework for implementing reservoir computing (RC) and extreme learning machines (ELMs), two types of artificial neural networks, based on 1D elementary Cellular Automata (CA) is presented, in which two separate CA rules explicitly implement the minimum computational requirements of the reservoir layer: hyperdimensional projection and short-term memory. CAs are cell-based state machines, which evolve in time in accordance with local rules based on a cells current state and those of its neighbors. Notably, simple single cell shift rules as the memory rule in a fixed edge CA afforded reasonable success in conjunction with a variety of projection rules, potentially significantly reducing the optimal solution search space. Optimal iteration counts for the CA rule pairs can be estimated for some tasks based upon the category of the projection rule. Initial results support future hardware realization, where CAs potentially afford orders of magnitude reduction in size, weight, and power (SWaP) requirements compared with floating point RC implementations.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.