Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Compact Neighborhood Index for Subgraph Queries in Massive Graphs (1703.05547v4)

Published 16 Mar 2017 in cs.DB

Abstract: Subgraph queries also known as subgraph isomorphism search is a fundamental problem in querying graph-like structured data. It consists to enumerate the subgraphs of a data graph that match a query graph. This problem arises in many real-world applications related to query processing or pattern recognition such as computer vision, social network analysis, bioinformatic and big data analytic. Subgraph isomorphism search knows a lot of investigations and solutions mainly because of its importance and use but also because of its NP-completeness. Existing solutions use filtering mechanisms and optimise the order within witch the query vertices are matched on the data vertices to obtain acceptable processing times. However, existing approaches are iterative and generate several intermediate results. They also require that the data graph is loaded in main memory and consequently are not adapted to large graphs that do not fit into memory or are accessed by streams. To tackle this problem, we propose a new approach based on concepts widely different from existing works. Our approach distills the semantic and topological information that surround a vertex into a simple integer. This simple vertex encoding that can be computed and updated incrementally reduces considerably intermediate results and avoid to load the entire data graph into main memory. We evaluate our approach on several real-word datasets. The experimental results show that our approach is efficient and scalable.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.