Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Arrovian Aggregation of Convex Preferences (1703.05519v6)

Published 16 Mar 2017 in cs.GT and cs.MA

Abstract: We consider social welfare functions that satisfy Arrow's classic axioms of independence of irrelevant alternatives and Pareto optimality when the outcome space is the convex hull of some finite set of alternatives. Individual and collective preferences are assumed to be continuous and convex, which guarantees the existence of maximal elements and the consistency of choice functions that return these elements, even without insisting on transitivity. We provide characterizations of both the domains of preferences and the social welfare functions that allow for anonymous Arrovian aggregation. The domains admit arbitrary preferences over alternatives, which completely determine an agent's preferences over all mixed outcomes. On these domains, Arrow's impossibility turns into a complete characterization of a unique social welfare function, which can be readily applied in settings involving divisible resources such as probability, time, or money.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.