Papers
Topics
Authors
Recent
2000 character limit reached

Cost-complexity pruning of random forests (1703.05430v2)

Published 15 Mar 2017 in stat.ML and cs.LG

Abstract: Random forests perform bootstrap-aggregation by sampling the training samples with replacement. This enables the evaluation of out-of-bag error which serves as a internal cross-validation mechanism. Our motivation lies in using the unsampled training samples to improve each decision tree in the ensemble. We study the effect of using the out-of-bag samples to improve the generalization error first of the decision trees and second the random forest by post-pruning. A preliminary empirical study on four UCI repository datasets show consistent decrease in the size of the forests without considerable loss in accuracy.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.