Papers
Topics
Authors
Recent
2000 character limit reached

Cost-complexity pruning of random forests

Published 15 Mar 2017 in stat.ML and cs.LG | (1703.05430v2)

Abstract: Random forests perform bootstrap-aggregation by sampling the training samples with replacement. This enables the evaluation of out-of-bag error which serves as a internal cross-validation mechanism. Our motivation lies in using the unsampled training samples to improve each decision tree in the ensemble. We study the effect of using the out-of-bag samples to improve the generalization error first of the decision trees and second the random forest by post-pruning. A preliminary empirical study on four UCI repository datasets show consistent decrease in the size of the forests without considerable loss in accuracy.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.