Papers
Topics
Authors
Recent
2000 character limit reached

A Local Algorithm for the Sparse Spanning Graph Problem (1703.05418v2)

Published 15 Mar 2017 in cs.DS

Abstract: Constructing a sparse spanning subgraph is a fundamental primitive in graph theory. In this paper, we study this problem in the Centralized Local model, where the goal is to decide whether an edge is part of the spanning subgraph by examining only a small part of the input; yet, answers must be globally consistent and independent of prior queries. Unfortunately, maximally sparse spanning subgraphs, i.e., spanning trees, cannot be constructed efficiently in this model. Therefore, we settle for a spanning subgraph containing at most $(1+\varepsilon)n$ edges (where $n$ is the number of vertices and $\varepsilon$ is a given approximation/sparsity parameter). We achieve query complexity of $\tilde{O}(poly(\Delta/\varepsilon)n{2/3})$, ($\tilde{O}$-notation hides polylogarithmic factors in $n$). where $\Delta$ is the maximum degree of the input graph. Our algorithm is the first to do so on arbitrary bounded degree graphs. Moreover, we achieve the additional property that our algorithm outputs a spanner, i.e., distances are approximately preserved. With high probability, for each deleted edge there is a path of $O(poly(\Delta/\varepsilon)\log2 n)$ hops in the output that connects its endpoints.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.