Papers
Topics
Authors
Recent
2000 character limit reached

Aggregation of Classifiers: A Justifiable Information Granularity Approach (1703.05411v1)

Published 15 Mar 2017 in cs.LG and stat.ML

Abstract: In this study, we introduce a new approach to combine multi-classifiers in an ensemble system. Instead of using numeric membership values encountered in fixed combining rules, we construct interval membership values associated with each class prediction at the level of meta-data of observation by using concepts of information granules. In the proposed method, uncertainty (diversity) of findings produced by the base classifiers is quantified by interval-based information granules. The discriminative decision model is generated by considering both the bounds and the length of the obtained intervals. We select ten and then fifteen learning algorithms to build a heterogeneous ensemble system and then conducted the experiment on a number of UCI datasets. The experimental results demonstrate that the proposed approach performs better than the benchmark algorithms including six fixed combining methods, one trainable combining method, AdaBoost, Bagging, and Random Subspace.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.