Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Harmonic Mean Iteratively Reweighted Least Squares for Low-Rank Matrix Recovery (1703.05038v2)

Published 15 Mar 2017 in math.NA, cs.IT, math.IT, and math.OC

Abstract: We propose a new iteratively reweighted least squares (IRLS) algorithm for the recovery of a matrix $X \in \mathbb{C}{d_1\times d_2}$ of rank $r \ll\min(d_1,d_2)$ from incomplete linear observations, solving a sequence of low complexity linear problems. The easily implementable algorithm, which we call harmonic mean iteratively reweighted least squares (HM-IRLS), optimizes a non-convex Schatten-$p$ quasi-norm penalization to promote low-rankness and carries three major strengths, in particular for the matrix completion setting. First, we observe a remarkable global convergence behavior of the algorithm's iterates to the low-rank matrix for relevant, interesting cases, for which any other state-of-the-art optimization approach fails the recovery. Secondly, HM-IRLS exhibits an empirical recovery probability close to $1$ even for a number of measurements very close to the theoretical lower bound $r (d_1 +d_2 -r)$, i.e., already for significantly fewer linear observations than any other tractable approach in the literature. Thirdly, HM-IRLS exhibits a locally superlinear rate of convergence (of order $2-p$) if the linear observations fulfill a suitable null space property. While for the first two properties we have so far only strong empirical evidence, we prove the third property as our main theoretical result.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.