Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Distributed-Representation Based Hybrid Recommender System with Short Item Descriptions (1703.04854v1)

Published 15 Mar 2017 in cs.IR and cs.CL

Abstract: Collaborative filtering (CF) aims to build a model from users' past behaviors and/or similar decisions made by other users, and use the model to recommend items for users. Despite of the success of previous collaborative filtering approaches, they are all based on the assumption that there are sufficient rating scores available for building high-quality recommendation models. In real world applications, however, it is often difficult to collect sufficient rating scores, especially when new items are introduced into the system, which makes the recommendation task challenging. We find that there are often "short" texts describing features of items, based on which we can approximate the similarity of items and make recommendation together with rating scores. In this paper we "borrow" the idea of vector representation of words to capture the information of short texts and embed it into a matrix factorization framework. We empirically show that our approach is effective by comparing it with state-of-the-art approaches.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.