Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Face Recognition using Multi-Modal Low-Rank Dictionary Learning (1703.04853v1)

Published 15 Mar 2017 in cs.CV

Abstract: Face recognition has been widely studied due to its importance in different applications; however, most of the proposed methods fail when face images are occluded or captured under illumination and pose variations. Recently several low-rank dictionary learning methods have been proposed and achieved promising results for noisy observations. While these methods are mostly developed for single-modality scenarios, recent studies demonstrated the advantages of feature fusion from multiple inputs. We propose a multi-modal structured low-rank dictionary learning method for robust face recognition, using raw pixels of face images and their illumination invariant representation. The proposed method learns robust and discriminative representations from contaminated face images, even if there are few training samples with large intra-class variations. Extensive experiments on different datasets validate the superior performance and robustness of our method to severe illumination variations and occlusion.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.