Papers
Topics
Authors
Recent
2000 character limit reached

Joint Learning of Correlated Sequence Labelling Tasks Using Bidirectional Recurrent Neural Networks (1703.04650v3)

Published 14 Mar 2017 in cs.CL

Abstract: The stream of words produced by Automatic Speech Recognition (ASR) systems is typically devoid of punctuations and formatting. Most natural language processing applications expect segmented and well-formatted texts as input, which is not available in ASR output. This paper proposes a novel technique of jointly modeling multiple correlated tasks such as punctuation and capitalization using bidirectional recurrent neural networks, which leads to improved performance for each of these tasks. This method could be extended for joint modeling of any other correlated sequence labeling tasks.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.