MTBase: Optimizing Cross-Tenant Database Queries (1703.04290v1)
Abstract: In the last decade, many business applications have moved into the cloud. In particular, the "database-as-a-service" paradigm has become mainstream. While existing multi-tenant data management systems focus on single-tenant query processing, we believe that it is time to rethink how queries can be processed across multiple tenants in such a way that we do not only gain more valuable insights, but also at minimal cost. As we will argue in this paper, standard SQL semantics are insufficient to process cross-tenant queries in an unambiguous way, which is why existing systems use other, expensive means like ETL or data integration. We first propose MTSQL, a set of extensions to standard SQL, which fixes the ambiguity problem. Next, we present MTBase, a query processing middleware that efficiently processes MTSQL on top of SQL. As we will see, there is a canonical, provably correct, rewrite algorithm from MTSQL to SQL, which may however result in poor query execution performance, even on high-performance database products. We further show that with carefully-designed optimizations, execution times can be reduced in such ways that the difference to single-tenant queries becomes marginal.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.