Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

The Densest Subgraph Problem with a Convex/Concave Size Function (1703.03603v1)

Published 10 Mar 2017 in cs.DS, cs.DM, and cs.SI

Abstract: In the densest subgraph problem, given an edge-weighted undirected graph $G=(V,E,w)$, we are asked to find $S\subseteq V$ that maximizes the density, i.e., $w(S)/|S|$, where $w(S)$ is the sum of weights of the edges in the subgraph induced by $S$. This problem has often been employed in a wide variety of graph mining applications. However, the problem has a drawback; it may happen that the obtained subset is too large or too small in comparison with the size desired in the application at hand. In this study, we address the size issue of the densest subgraph problem by generalizing the density of $S\subseteq V$. Specifically, we introduce the $f$-density of $S\subseteq V$, which is defined as $w(S)/f(|S|)$, where $f:\mathbb{Z}{\geq 0}\rightarrow \mathbb{R}{\geq 0}$ is a monotonically non-decreasing function. In the $f$-densest subgraph problem ($f$-DS), we aim to find $S\subseteq V$ that maximizes the $f$-density $w(S)/f(|S|)$. Although $f$-DS does not explicitly specify the size of the output subset of vertices, we can handle the above size issue using a convex/concave size function $f$ appropriately. For $f$-DS with convex function $f$, we propose a nearly-linear-time algorithm with a provable approximation guarantee. On the other hand, for $f$-DS with concave function $f$, we propose an LP-based exact algorithm, a flow-based $O(|V|3)$-time exact algorithm for unweighted graphs, and a nearly-linear-time approximation algorithm.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.