Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

High SNR Consistent Compressive Sensing (1703.03596v1)

Published 10 Mar 2017 in stat.ML, cs.IT, and math.IT

Abstract: High signal to noise ratio (SNR) consistency of model selection criteria in linear regression models has attracted a lot of attention recently. However, most of the existing literature on high SNR consistency deals with model order selection. Further, the limited literature available on the high SNR consistency of subset selection procedures (SSPs) is applicable to linear regression with full rank measurement matrices only. Hence, the performance of SSPs used in underdetermined linear models (a.k.a compressive sensing (CS) algorithms) at high SNR is largely unknown. This paper fills this gap by deriving necessary and sufficient conditions for the high SNR consistency of popular CS algorithms like $l_0$-minimization, basis pursuit de-noising or LASSO, orthogonal matching pursuit and Dantzig selector. Necessary conditions analytically establish the high SNR inconsistency of CS algorithms when used with the tuning parameters discussed in literature. Novel tuning parameters with SNR adaptations are developed using the sufficient conditions and the choice of SNR adaptations are discussed analytically using convergence rate analysis. CS algorithms with the proposed tuning parameters are numerically shown to be high SNR consistent and outperform existing tuning parameters in the moderate to high SNR regime.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.