Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Crossing the Logarithmic Barrier for Dynamic Boolean Data Structure Lower Bounds (1703.03575v1)

Published 10 Mar 2017 in cs.DS, cs.CC, cs.CG, cs.IT, and math.IT

Abstract: This paper proves the first super-logarithmic lower bounds on the cell probe complexity of dynamic boolean (a.k.a. decision) data structure problems, a long-standing milestone in data structure lower bounds. We introduce a new method for proving dynamic cell probe lower bounds and use it to prove a $\tilde{\Omega}(\log{1.5} n)$ lower bound on the operational time of a wide range of boolean data structure problems, most notably, on the query time of dynamic range counting over $\mathbb{F}_2$ ([Pat07]). Proving an $\omega(\lg n)$ lower bound for this problem was explicitly posed as one of five important open problems in the late Mihai P\v{a}tra\c{s}cu's obituary [Tho13]. This result also implies the first $\omega(\lg n)$ lower bound for the classical 2D range counting problem, one of the most fundamental data structure problems in computational geometry and spatial databases. We derive similar lower bounds for boolean versions of dynamic polynomial evaluation and 2D rectangle stabbing, and for the (non-boolean) problems of range selection and range median. Our technical centerpiece is a new way of "weakly" simulating dynamic data structures using efficient one-way communication protocols with small advantage over random guessing. This simulation involves a surprising excursion to low-degree (Chebychev) polynomials which may be of independent interest, and offers an entirely new algorithmic angle on the "cell sampling" method of Panigrahy et al. [PTW10].

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.