Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 352 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Modeling the Ellsberg Paradox by Argument Strength (1703.03233v1)

Published 9 Mar 2017 in cs.AI, math.LO, and math.PR

Abstract: We present a formal measure of argument strength, which combines the ideas that conclusions of strong arguments are (i) highly probable and (ii) their uncertainty is relatively precise. Likewise, arguments are weak when their conclusion probability is low or when it is highly imprecise. We show how the proposed measure provides a new model of the Ellsberg paradox. Moreover, we further substantiate the psychological plausibility of our approach by an experiment (N = 60). The data show that the proposed measure predicts human inferences in the original Ellsberg task and in corresponding argument strength tasks. Finally, we report qualitative data taken from structured interviews on folk psychological conceptions on what argument strength means.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.