Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Juggling Functions Inside a Database (1703.03147v1)

Published 9 Mar 2017 in cs.DB, cs.DS, and cs.LO

Abstract: We define and study the Functional Aggregate Query (FAQ) problem, which captures common computational tasks across a very wide range of domains including relational databases, logic, matrix and tensor computation, probabilistic graphical models, constraint satisfaction, and signal processing. Simply put, an FAQ is a declarative way of defining a new function from a database of input functions. We present "InsideOut", a dynamic programming algorithm, to evaluate an FAQ. The algorithm rewrites the input query into a set of easier-to-compute FAQ sub-queries. Each sub-query is then evaluated using a worst-case optimal relational join algorithm. The topic of designing algorithms to optimally evaluate the classic multiway join problem has seen exciting developments in the past few years. Our framework tightly connects these new ideas in database theory with a vast number of application areas in a coherent manner, showing potentially that a good database engine can be a general-purpose constraint solver, relational data store, graphical model inference engine, and matrix/tensor computation processor all at once. The InsideOut algorithm is very simple, as shall be described in this paper. Yet, in spite of solving an extremely general problem, its runtime either is as good as or improves upon the best known algorithm for the applications that FAQ specializes to. These corollaries include computational tasks in graphical model inference, matrix/tensor operations, relational joins, and logic. Better yet, InsideOut can be used within any database engine, because it is basically a principled way of rewriting queries. Indeed, it is already part of the LogicBlox database engine, helping efficiently answer traditional database queries, graphical model inference queries, and train a large class of machine learning models inside the database itself.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.