Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Deep Convolutional Neural Network Inference with Floating-point Weights and Fixed-point Activations (1703.03073v1)

Published 8 Mar 2017 in cs.LG and cs.CV

Abstract: Deep convolutional neural network (CNN) inference requires significant amount of memory and computation, which limits its deployment on embedded devices. To alleviate these problems to some extent, prior research utilize low precision fixed-point numbers to represent the CNN weights and activations. However, the minimum required data precision of fixed-point weights varies across different networks and also across different layers of the same network. In this work, we propose using floating-point numbers for representing the weights and fixed-point numbers for representing the activations. We show that using floating-point representation for weights is more efficient than fixed-point representation for the same bit-width and demonstrate it on popular large-scale CNNs such as AlexNet, SqueezeNet, GoogLeNet and VGG-16. We also show that such a representation scheme enables compact hardware multiply-and-accumulate (MAC) unit design. Experimental results show that the proposed scheme reduces the weight storage by up to 36% and power consumption of the hardware multiplier by up to 50%.

Citations (84)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.