Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Qualitative Assessment of Recurrent Human Motion (1703.02363v2)

Published 7 Mar 2017 in cs.LG and cs.CV

Abstract: Smartphone applications designed to track human motion in combination with wearable sensors, e.g., during physical exercising, raised huge attention recently. Commonly, they provide quantitative services, such as personalized training instructions or the counting of distances. But qualitative monitoring and assessment is still missing, e.g., to detect malpositions, to prevent injuries, or to optimize training success. We address this issue by presenting a concept for qualitative as well as generic assessment of recurrent human motion by processing multi-dimensional, continuous time series tracked with motion sensors. Therefore, our segmentation procedure extracts individual events of specific length and we propose expressive features to accomplish a qualitative motion assessment by supervised classification. We verified our approach within a comprehensive study encompassing 27 athletes undertaking different body weight exercises. We are able to recognize six different exercise types with a success rate of 100% and to assess them qualitatively with an average success rate of 99.3%.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.