Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Qualitative Assessment of Recurrent Human Motion (1703.02363v2)

Published 7 Mar 2017 in cs.LG and cs.CV

Abstract: Smartphone applications designed to track human motion in combination with wearable sensors, e.g., during physical exercising, raised huge attention recently. Commonly, they provide quantitative services, such as personalized training instructions or the counting of distances. But qualitative monitoring and assessment is still missing, e.g., to detect malpositions, to prevent injuries, or to optimize training success. We address this issue by presenting a concept for qualitative as well as generic assessment of recurrent human motion by processing multi-dimensional, continuous time series tracked with motion sensors. Therefore, our segmentation procedure extracts individual events of specific length and we propose expressive features to accomplish a qualitative motion assessment by supervised classification. We verified our approach within a comprehensive study encompassing 27 athletes undertaking different body weight exercises. We are able to recognize six different exercise types with a success rate of 100% and to assess them qualitatively with an average success rate of 99.3%.

Citations (13)

Summary

We haven't generated a summary for this paper yet.