Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Using Approximate Computing for the Calculation of Inverse Matrix p-th Roots (1703.02283v1)

Published 7 Mar 2017 in cs.NA

Abstract: Approximate computing has shown to provide new ways to improve performance and power consumption of error-resilient applications. While many of these applications can be found in image processing, data classification or machine learning, we demonstrate its suitability to a problem from scientific computing. Utilizing the self-correcting behavior of iterative algorithms, we show that approximate computing can be applied to the calculation of inverse matrix p-th roots which are required in many applications in scientific computing. Results show great opportunities to reduce the computational effort and bandwidth required for the execution of the discussed algorithm, especially when targeting special accelerator hardware.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.