Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Revisiting stochastic off-policy action-value gradients (1703.02102v2)

Published 6 Mar 2017 in stat.ML and cs.LG

Abstract: Off-policy stochastic actor-critic methods rely on approximating the stochastic policy gradient in order to derive an optimal policy. One may also derive the optimal policy by approximating the action-value gradient. The use of action-value gradients is desirable as policy improvement occurs along the direction of steepest ascent. This has been studied extensively within the context of natural gradient actor-critic algorithms and more recently within the context of deterministic policy gradients. In this paper we briefly discuss the off-policy stochastic counterpart to deterministic action-value gradients, as well as an incremental approach for following the policy gradient in lieu of the natural gradient.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.