Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
9 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting stochastic off-policy action-value gradients (1703.02102v2)

Published 6 Mar 2017 in stat.ML and cs.LG

Abstract: Off-policy stochastic actor-critic methods rely on approximating the stochastic policy gradient in order to derive an optimal policy. One may also derive the optimal policy by approximating the action-value gradient. The use of action-value gradients is desirable as policy improvement occurs along the direction of steepest ascent. This has been studied extensively within the context of natural gradient actor-critic algorithms and more recently within the context of deterministic policy gradients. In this paper we briefly discuss the off-policy stochastic counterpart to deterministic action-value gradients, as well as an incremental approach for following the policy gradient in lieu of the natural gradient.

Summary

We haven't generated a summary for this paper yet.