Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Reduced-Order Modeling for Stochastic Partial Differential Equations (1703.01962v1)

Published 6 Mar 2017 in stat.ML

Abstract: We discuss a Bayesian formulation to coarse-graining (CG) of PDEs where the coefficients (e.g. material parameters) exhibit random, fine scale variability. The direct solution to such problems requires grids that are small enough to resolve this fine scale variability which unavoidably requires the repeated solution of very large systems of algebraic equations. We establish a physically inspired, data-driven coarse-grained model which learns a low- dimensional set of microstructural features that are predictive of the fine-grained model (FG) response. Once learned, those features provide a sharp distribution over the coarse scale effec- tive coefficients of the PDE that are most suitable for prediction of the fine scale model output. This ultimately allows to replace the computationally expensive FG by a generative proba- bilistic model based on evaluating the much cheaper CG several times. Sparsity enforcing pri- ors further increase predictive efficiency and reveal microstructural features that are important in predicting the FG response. Moreover, the model yields probabilistic rather than single-point predictions, which enables the quantification of the unavoidable epistemic uncertainty that is present due to the information loss that occurs during the coarse-graining process.

Citations (4)

Summary

We haven't generated a summary for this paper yet.