Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Machine Learning Friendly Set Version of Johnson-Lindenstrauss Lemma (1703.01507v5)

Published 4 Mar 2017 in cs.DS and cs.LG

Abstract: In this paper we make a novel use of the Johnson-Lindenstrauss Lemma. The Lemma has an existential form saying that there exists a JL transformation $f$ of the data points into lower dimensional space such that all of them fall into predefined error range $\delta$. We formulate in this paper a theorem stating that we can choose the target dimensionality in a random projection type JL linear transformation in such a way that with probability $1-\epsilon$ all of them fall into predefined error range $\delta$ for any user-predefined failure probability $\epsilon$. This result is important for applications such a data clustering where we want to have a priori dimensionality reducing transformation instead of trying out a (large) number of them, as with traditional Johnson-Lindenstrauss Lemma. In particular, we take a closer look at the $k$-means algorithm and prove that a good solution in the projected space is also a good solution in the original space. Furthermore, under proper assumptions local optima in the original space are also ones in the projected space. We define also conditions for which clusterability property of the original space is transmitted to the projected space, so that special case algorithms for the original space are also applicable in the projected space.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.