Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Instance Flow Based Online Multiple Object Tracking (1703.01289v2)

Published 3 Mar 2017 in cs.CV

Abstract: We present a method to perform online Multiple Object Tracking (MOT) of known object categories in monocular video data. Current Tracking-by-Detection MOT approaches build on top of 2D bounding box detections. In contrast, we exploit state-of-the-art instance aware semantic segmentation techniques to compute 2D shape representations of target objects in each frame. We predict position and shape of segmented instances in subsequent frames by exploiting optical flow cues. We define an affinity matrix between instances of subsequent frames which reflects locality and visual similarity. The instance association is solved by applying the Hungarian method. We evaluate different configurations of our algorithm using the MOT 2D 2015 train dataset. The evaluation shows that our tracking approach is able to track objects with high relative motions. In addition, we provide results of our approach on the MOT 2D 2015 test set for comparison with previous works. We achieve a MOTA score of 32.1.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.