Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Actor-Critic Reinforcement Learning with Simultaneous Human Control and Feedback (1703.01274v2)

Published 3 Mar 2017 in cs.AI, cs.HC, and cs.RO

Abstract: This paper contributes a first study into how different human users deliver simultaneous control and feedback signals during human-robot interaction. As part of this work, we formalize and present a general interactive learning framework for online cooperation between humans and reinforcement learning agents. In many human-machine interaction settings, there is a growing gap between the degrees-of-freedom of complex semi-autonomous systems and the number of human control channels. Simple human control and feedback mechanisms are required to close this gap and allow for better collaboration between humans and machines on complex tasks. To better inform the design of concurrent control and feedback interfaces, we present experimental results from a human-robot collaborative domain wherein the human must simultaneously deliver both control and feedback signals to interactively train an actor-critic reinforcement learning robot. We compare three experimental conditions: 1) human delivered control signals, 2) reward-shaping feedback signals, and 3) simultaneous control and feedback. Our results suggest that subjects provide less feedback when simultaneously delivering feedback and control signals and that control signal quality is not significantly diminished. Our data suggest that subjects may also modify when and how they provide feedback. Through algorithmic development and tuning informed by this study, we expect semi-autonomous actions of robotic agents can be better shaped by human feedback, allowing for seamless collaboration and improved performance in difficult interactive domains.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.