Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Context Aware Query Image Representation for Particular Object Retrieval (1703.01226v1)

Published 3 Mar 2017 in cs.CV

Abstract: The current models of image representation based on Convolutional Neural Networks (CNN) have shown tremendous performance in image retrieval. Such models are inspired by the information flow along the visual pathway in the human visual cortex. We propose that in the field of particular object retrieval, the process of extracting CNN representations from query images with a given region of interest (ROI) can also be modelled by taking inspiration from human vision. Particularly, we show that by making the CNN pay attention on the ROI while extracting query image representation leads to significant improvement over the baseline methods on challenging Oxford5k and Paris6k datasets. Furthermore, we propose an extension to a recently introduced encoding method for CNN representations, regional maximum activations of convolutions (R-MAC). The proposed extension weights the regional representations using a novel saliency measure prior to aggregation. This leads to further improvement in retrieval accuracy.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.