Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Dynamic State Warping (1703.01141v1)

Published 3 Mar 2017 in cs.LG

Abstract: The ubiquity of sequences in many domains enhances significant recent interest in sequence learning, for which a basic problem is how to measure the distance between sequences. Dynamic time warping (DTW) aligns two sequences by nonlinear local warping and returns a distance value. DTW shows superior ability in many applications, e.g. video, image, etc. However, in DTW, two points are paired essentially based on point-to-point Euclidean distance (ED) without considering the autocorrelation of sequences. Thus, points with different semantic meanings, e.g. peaks and valleys, may be matched providing their coordinate values are similar. As a result, DTW is sensitive to noise and poorly interpretable. This paper proposes an efficient and flexible sequence alignment algorithm, dynamic state warping (DSW). DSW converts each time point into a latent state, which endows point-wise autocorrelation information. Alignment is performed by using the state sequences. Thus DSW is able to yield alignment that is semantically more interpretable than that of DTW. Using one nearest neighbor classifier, DSW shows significant improvement on classification accuracy in comparison to ED (70/85 wins) and DTW (74/85 wins). We also empirically demonstrate that DSW is more robust and scales better to long sequences than ED and DTW.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.