Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Outlier Cluster Formation in Spectral Clustering (1703.01028v1)

Published 3 Mar 2017 in cs.CV

Abstract: Outlier detection and cluster number estimation is an important issue for clustering real data. This paper focuses on spectral clustering, a time-tested clustering method, and reveals its important properties related to outliers. The highlights of this paper are the following two mathematical observations: first, spectral clustering's intrinsic property of an outlier cluster formation, and second, the singularity of an outlier cluster with a valid cluster number. Based on these observations, we designed a function that evaluates clustering and outlier detection results. In experiments, we prepared two scenarios, face clustering in photo album and person re-identification in a camera network. We confirmed that the proposed method detects outliers and estimates the number of clusters properly in both problems. Our method outperforms state-of-the-art methods in both the 128-dimensional sparse space for face clustering and the 4,096-dimensional non-sparse space for person re-identification.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.