Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Co-Clustering for Multitask Learning (1703.00994v1)

Published 3 Mar 2017 in stat.ML and cs.LG

Abstract: This paper presents a new multitask learning framework that learns a shared representation among the tasks, incorporating both task and feature clusters. The jointly-induced clusters yield a shared latent subspace where task relationships are learned more effectively and more generally than in state-of-the-art multitask learning methods. The proposed general framework enables the derivation of more specific or restricted state-of-the-art multitask methods. The paper also proposes a highly-scalable multitask learning algorithm, based on the new framework, using conjugate gradient descent and generalized \textit{Sylvester equations}. Experimental results on synthetic and benchmark datasets show that the proposed method systematically outperforms several state-of-the-art multitask learning methods.

Citations (8)

Summary

We haven't generated a summary for this paper yet.