Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Friendship Maintenance and Prediction in Multiple Social Networks (1703.00857v1)

Published 2 Mar 2017 in cs.SI and physics.soc-ph

Abstract: Due to the proliferation of online social networks (OSNs), users find themselves participating in multiple OSNs. These users leave their activity traces as they maintain friendships and interact with other users in these OSNs. In this work, we analyze how users maintain friendship in multiple OSNs by studying users who have accounts in both Twitter and Instagram. Specifically, we study the similarity of a user's friendship and the evenness of friendship distribution in multiple OSNs. Our study shows that most users in Twitter and Instagram prefer to maintain different friendships in the two OSNs, keeping only a small clique of common friends in across the OSNs. Based upon our empirical study, we conduct link prediction experiments to predict missing friendship links in multiple OSNs using the neighborhood features, neighborhood friendship maintenance features and cross-link features. Our link prediction experiments shows that un- supervised methods can yield good accuracy in predicting links in one OSN using another OSN data and the link prediction accuracy can be further improved using supervised method with friendship maintenance and others measures as features.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.