Papers
Topics
Authors
Recent
2000 character limit reached

Learning Social Affordance Grammar from Videos: Transferring Human Interactions to Human-Robot Interactions (1703.00503v1)

Published 1 Mar 2017 in cs.RO, cs.AI, and cs.CV

Abstract: In this paper, we present a general framework for learning social affordance grammar as a spatiotemporal AND-OR graph (ST-AOG) from RGB-D videos of human interactions, and transfer the grammar to humanoids to enable a real-time motion inference for human-robot interaction (HRI). Based on Gibbs sampling, our weakly supervised grammar learning can automatically construct a hierarchical representation of an interaction with long-term joint sub-tasks of both agents and short term atomic actions of individual agents. Based on a new RGB-D video dataset with rich instances of human interactions, our experiments of Baxter simulation, human evaluation, and real Baxter test demonstrate that the model learned from limited training data successfully generates human-like behaviors in unseen scenarios and outperforms both baselines.

Citations (40)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.