Papers
Topics
Authors
Recent
2000 character limit reached

Learning Conversational Systems that Interleave Task and Non-Task Content (1703.00099v1)

Published 1 Mar 2017 in cs.CL, cs.AI, and cs.HC

Abstract: Task-oriented dialog systems have been applied in various tasks, such as automated personal assistants, customer service providers and tutors. These systems work well when users have clear and explicit intentions that are well-aligned to the systems' capabilities. However, they fail if users intentions are not explicit. To address this shortcoming, we propose a framework to interleave non-task content (i.e. everyday social conversation) into task conversations. When the task content fails, the system can still keep the user engaged with the non-task content. We trained a policy using reinforcement learning algorithms to promote long-turn conversation coherence and consistency, so that the system can have smooth transitions between task and non-task content. To test the effectiveness of the proposed framework, we developed a movie promotion dialog system. Experiments with human users indicate that a system that interleaves social and task content achieves a better task success rate and is also rated as more engaging compared to a pure task-oriented system.

Citations (51)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.