Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Robust Bipedal Locomotion Control Based on Model Predictive Control and Divergent Component of Motion (1702.08742v1)

Published 28 Feb 2017 in cs.RO

Abstract: In this paper, previous works on the Model Predictive Control (MPC) and the Divergent Component of Motion (DCM) for bipedal walking control are extended. To this end, we employ a single MPC which uses a combination of Center of Pressure (CoP) manipulation, step adjustment, and Centroidal Moment Pivot (CMP) modulation to design a robust walking controller. Furthermore, we exploit the concept of time-varying DCM to generalize our walking controller for walking in uneven surfaces. Using our scheme, a general and robust walking controller is designed which can be implemented on robots with different control authorities, for walking on various environments, e.g. uneven terrains or surfaces with a very limited feasible area for stepping. The effectiveness of the proposed approach is verified through simulations on different scenarios and comparison to the state of the art.

Citations (51)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.