Papers
Topics
Authors
Recent
2000 character limit reached

Improving the Neural GPU Architecture for Algorithm Learning (1702.08727v2)

Published 28 Feb 2017 in cs.NE

Abstract: Algorithm learning is a core problem in artificial intelligence with significant implications on automation level that can be achieved by machines. Recently deep learning methods are emerging for synthesizing an algorithm from its input-output examples, the most successful being the Neural GPU, capable of learning multiplication. We present several improvements to the Neural GPU that substantially reduces training time and improves generalization. We introduce a new technique - hard nonlinearities with saturation costs- that has general applicability. We also introduce a technique of diagonal gates that can be applied to active-memory models. The proposed architecture is the first capable of learning decimal multiplication end-to-end.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.