Faster DB-scan and HDB-scan in Low-Dimensional Euclidean Spaces (1702.08607v1)
Abstract: We present a new algorithm for the widely used density-based clustering method DBscan. Our algorithm computes the DBscan-clustering in $O(n\log n)$ time in $\mathbb{R}2$, irrespective of the scale parameter $\varepsilon$ (and assuming the second parameter MinPts is set to a fixed constant, as is the case in practice). Experiments show that the new algorithm is not only fast in theory, but that a slightly simplified version is competitive in practice and much less sensitive to the choice of $\varepsilon$ than the original DBscan algorithm. We also present an $O(n\log n)$ randomized algorithm for HDBscan in the plane---HDBscan is a hierarchical version of DBscan introduced recently---and we show how to compute an approximate version of HDBscan in near-linear time in any fixed dimension.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.