Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Faster DB-scan and HDB-scan in Low-Dimensional Euclidean Spaces (1702.08607v1)

Published 28 Feb 2017 in cs.CG

Abstract: We present a new algorithm for the widely used density-based clustering method DBscan. Our algorithm computes the DBscan-clustering in $O(n\log n)$ time in $\mathbb{R}2$, irrespective of the scale parameter $\varepsilon$ (and assuming the second parameter MinPts is set to a fixed constant, as is the case in practice). Experiments show that the new algorithm is not only fast in theory, but that a slightly simplified version is competitive in practice and much less sensitive to the choice of $\varepsilon$ than the original DBscan algorithm. We also present an $O(n\log n)$ randomized algorithm for HDBscan in the plane---HDBscan is a hierarchical version of DBscan introduced recently---and we show how to compute an approximate version of HDBscan in near-linear time in any fixed dimension.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.