Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Faster DB-scan and HDB-scan in Low-Dimensional Euclidean Spaces (1702.08607v1)

Published 28 Feb 2017 in cs.CG

Abstract: We present a new algorithm for the widely used density-based clustering method DBscan. Our algorithm computes the DBscan-clustering in $O(n\log n)$ time in $\mathbb{R}2$, irrespective of the scale parameter $\varepsilon$ (and assuming the second parameter MinPts is set to a fixed constant, as is the case in practice). Experiments show that the new algorithm is not only fast in theory, but that a slightly simplified version is competitive in practice and much less sensitive to the choice of $\varepsilon$ than the original DBscan algorithm. We also present an $O(n\log n)$ randomized algorithm for HDBscan in the plane---HDBscan is a hierarchical version of DBscan introduced recently---and we show how to compute an approximate version of HDBscan in near-linear time in any fixed dimension.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube