Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Can Boltzmann Machines Discover Cluster Updates ? (1702.08586v1)

Published 28 Feb 2017 in physics.comp-ph, cond-mat.stat-mech, cs.LG, and stat.ML

Abstract: Boltzmann machines are physics informed generative models with wide applications in machine learning. They can learn the probability distribution from an input dataset and generate new samples accordingly. Applying them back to physics, the Boltzmann machines are ideal recommender systems to accelerate Monte Carlo simulation of physical systems due to their flexibility and effectiveness. More intriguingly, we show that the generative sampling of the Boltzmann Machines can even discover unknown cluster Monte Carlo algorithms. The creative power comes from the latent representation of the Boltzmann machines, which learn to mediate complex interactions and identify clusters of the physical system. We demonstrate these findings with concrete examples of the classical Ising model with and without four spin plaquette interactions. Our results endorse a fresh research paradigm where intelligent machines are designed to create or inspire human discovery of innovative algorithms.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)