Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Depth Creates No Bad Local Minima (1702.08580v2)

Published 27 Feb 2017 in cs.LG, cs.NE, math.OC, and stat.ML

Abstract: In deep learning, \textit{depth}, as well as \textit{nonlinearity}, create non-convex loss surfaces. Then, does depth alone create bad local minima? In this paper, we prove that without nonlinearity, depth alone does not create bad local minima, although it induces non-convex loss surface. Using this insight, we greatly simplify a recently proposed proof to show that all of the local minima of feedforward deep linear neural networks are global minima. Our theoretical results generalize previous results with fewer assumptions, and this analysis provides a method to show similar results beyond square loss in deep linear models.

Citations (118)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.