Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Nearly Maximally Predictive Features and Their Dimensions (1702.08565v1)

Published 27 Feb 2017 in cond-mat.stat-mech, cs.IT, math.IT, nlin.CD, and stat.ML

Abstract: Scientific explanation often requires inferring maximally predictive features from a given data set. Unfortunately, the collection of minimal maximally predictive features for most stochastic processes is uncountably infinite. In such cases, one compromises and instead seeks nearly maximally predictive features. Here, we derive upper-bounds on the rates at which the number and the coding cost of nearly maximally predictive features scales with desired predictive power. The rates are determined by the fractal dimensions of a process' mixed-state distribution. These results, in turn, show how widely-used finite-order Markov models can fail as predictors and that mixed-state predictive features offer a substantial improvement.

Citations (26)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.