Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Depth Separation for Neural Networks (1702.08489v1)

Published 27 Feb 2017 in cs.LG, cs.CC, and stat.ML

Abstract: Let $f:\mathbb{S}{d-1}\times \mathbb{S}{d-1}\to\mathbb{S}$ be a function of the form $f(\mathbf{x},\mathbf{x}') = g(\langle\mathbf{x},\mathbf{x}'\rangle)$ for $g:[-1,1]\to \mathbb{R}$. We give a simple proof that shows that poly-size depth two neural networks with (exponentially) bounded weights cannot approximate $f$ whenever $g$ cannot be approximated by a low degree polynomial. Moreover, for many $g$'s, such as $g(x)=\sin(\pi d3x)$, the number of neurons must be $2{\Omega\left(d\log(d)\right)}$. Furthermore, the result holds w.r.t.\ the uniform distribution on $\mathbb{S}{d-1}\times \mathbb{S}{d-1}$. As many functions of the above form can be well approximated by poly-size depth three networks with poly-bounded weights, this establishes a separation between depth two and depth three networks w.r.t.\ the uniform distribution on $\mathbb{S}{d-1}\times \mathbb{S}{d-1}$.

Citations (71)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)