Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

An SDP-Based Algorithm for Linear-Sized Spectral Sparsification (1702.08415v1)

Published 27 Feb 2017 in cs.DS and cs.LG

Abstract: For any undirected and weighted graph $G=(V,E,w)$ with $n$ vertices and $m$ edges, we call a sparse subgraph $H$ of $G$, with proper reweighting of the edges, a $(1+\varepsilon)$-spectral sparsifier if [ (1-\varepsilon)x{\intercal}L_Gx\leq x{\intercal} L_{H} x\leq (1+\varepsilon) x{\intercal} L_Gx ] holds for any $x\in\mathbb{R}n$, where $L_G$ and $L_{H}$ are the respective Laplacian matrices of $G$ and $H$. Noticing that $\Omega(m)$ time is needed for any algorithm to construct a spectral sparsifier and a spectral sparsifier of $G$ requires $\Omega(n)$ edges, a natural question is to investigate, for any constant $\varepsilon$, if a $(1+\varepsilon)$-spectral sparsifier of $G$ with $O(n)$ edges can be constructed in $\tilde{O}(m)$ time, where the $\tilde{O}$ notation suppresses polylogarithmic factors. All previous constructions on spectral sparsification require either super-linear number of edges or $m{1+\Omega(1)}$ time. In this work we answer this question affirmatively by presenting an algorithm that, for any undirected graph $G$ and $\varepsilon>0$, outputs a $(1+\varepsilon)$-spectral sparsifier of $G$ with $O(n/\varepsilon2)$ edges in $\tilde{O}(m/\varepsilon{O(1)})$ time. Our algorithm is based on three novel techniques: (1) a new potential function which is much easier to compute yet has similar guarantees as the potential functions used in previous references; (2) an efficient reduction from a two-sided spectral sparsifier to a one-sided spectral sparsifier; (3) constructing a one-sided spectral sparsifier by a semi-definite program.

Citations (85)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)