Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Stochastic Stability Analysis of Perturbed Learning Automata with Constant Step-Size in Strategic-Form Games (1702.08334v1)

Published 27 Feb 2017 in cs.GT

Abstract: This paper considers a class of reinforcement-learning that belongs to the family of Learning Automata and provides a stochastic-stability analysis in strategic-form games. For this class of dynamics, convergence to pure Nash equilibria has been demonstrated only for the fine class of potential games. Prior work primarily provides convergence properties of the dynamics through stochastic approximations, where the asymptotic behavior can be associated with the limit points of an ordinary-differential equation (ODE). However, analyzing global convergence through the ODE-approximation requires the existence of a Lyapunov or a potential function, which naturally restricts the applicabity of these algorithms to a fine class of games. To overcome these limitations, this paper introduces an alternative framework for analyzing stochastic-stability that is based upon an explicit characterization of the (unique) invariant probability measure of the induced Markov chain.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)