Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Segmentation of Objects by Hashing (1702.08160v13)

Published 27 Feb 2017 in cs.CV

Abstract: We propose a novel approach to address the problem of Simultaneous Detection and Segmentation introduced in [Hariharan et al 2014]. Using the hierarchical structures first presented in [Arbel\'aez et al 2011] we use an efficient and accurate procedure that exploits the feature information of the hierarchy using Locality Sensitive Hashing. We build on recent work that utilizes convolutional neural networks to detect bounding boxes in an image [Ren et al 2015] and then use the top similar hierarchical region that best fits each bounding box after hashing, we call this approach C&Z Segmentation. We then refine our final segmentation results by automatic hierarchical pruning. C&Z Segmentation introduces a train-free alternative to Hypercolumns [Hariharan et al 2015]. We conduct extensive experiments on PASCAL VOC 2012 segmentation dataset, showing that C&Z gives competitive state-of-the-art segmentations of objects.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.