Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A multi-task convolutional neural network for mega-city analysis using very high resolution satellite imagery and geospatial data (1702.07985v1)

Published 26 Feb 2017 in cs.CV

Abstract: Mega-city analysis with very high resolution (VHR) satellite images has been drawing increasing interest in the fields of city planning and social investigation. It is known that accurate land-use, urban density, and population distribution information is the key to mega-city monitoring and environmental studies. Therefore, how to generate land-use, urban density, and population distribution maps at a fine scale using VHR satellite images has become a hot topic. Previous studies have focused solely on individual tasks with elaborate hand-crafted features and have ignored the relationship between different tasks. In this study, we aim to propose a universal framework which can: 1) automatically learn the internal feature representation from the raw image data; and 2) simultaneously produce fine-scale land-use, urban density, and population distribution maps. For the first target, a deep convolutional neural network (CNN) is applied to learn the hierarchical feature representation from the raw image data. For the second target, a novel CNN-based universal framework is proposed to process the VHR satellite images and generate the land-use, urban density, and population distribution maps. To the best of our knowledge, this is the first CNN-based mega-city analysis method which can process a VHR remote sensing image with such a large data volume. A VHR satellite image (1.2 m spatial resolution) of the center of Wuhan covering an area of 2606 km2 was used to evaluate the proposed method. The experimental results confirm that the proposed method can achieve a promising accuracy for land-use, urban density, and population distribution maps.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.