Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Automatic Representation for Lifetime Value Recommender Systems (1702.07125v1)

Published 23 Feb 2017 in stat.ML and cs.LG

Abstract: Many modern commercial sites employ recommender systems to propose relevant content to users. While most systems are focused on maximizing the immediate gain (clicks, purchases or ratings), a better notion of success would be the lifetime value (LTV) of the user-system interaction. The LTV approach considers the future implications of the item recommendation, and seeks to maximize the cumulative gain over time. The Reinforcement Learning (RL) framework is the standard formulation for optimizing cumulative successes over time. However, RL is rarely used in practice due to its associated representation, optimization and validation techniques which can be complex. In this paper we propose a new architecture for combining RL with recommendation systems which obviates the need for hand-tuned features, thus automating the state-space representation construction process. We analyze the practical difficulties in this formulation and test our solutions on batch off-line real-world recommendation data.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.