Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Model Predictive Control for Iterative Tasks: A Computationally Efficient Approach for Linear System (1702.07064v4)

Published 23 Feb 2017 in math.OC and cs.LG

Abstract: A Learning Model Predictive Controller (LMPC) for linear system in presented. The proposed controller is an extension of the LMPC [1] and it aims to decrease the computational burden. The control scheme is reference-free and is able to improve its performance by learning from previous iterations. A convex safe set and a terminal cost function are used in order to guarantee recursive feasibility and non-increasing performance at each iteration. The paper presents the control design approach, and shows how to recursively construct the convex terminal set and the terminal cost from state and input trajectories of previous iterations. Simulation results show the effectiveness of the proposed control logic.

Citations (53)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube