Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Neural Multi-Step Reasoning for Question Answering on Semi-Structured Tables (1702.06589v2)

Published 21 Feb 2017 in cs.CL

Abstract: Advances in natural language processing tasks have gained momentum in recent years due to the increasingly popular neural network methods. In this paper, we explore deep learning techniques for answering multi-step reasoning questions that operate on semi-structured tables. Challenges here arise from the level of logical compositionality expressed by questions, as well as the domain openness. Our approach is weakly supervised, trained on question-answer-table triples without requiring intermediate strong supervision. It performs two phases: first, machine understandable logical forms (programs) are generated from natural language questions following the work of [Pasupat and Liang, 2015]. Second, paraphrases of logical forms and questions are embedded in a jointly learned vector space using word and character convolutional neural networks. A neural scoring function is further used to rank and retrieve the most probable logical form (interpretation) of a question. Our best single model achieves 34.8% accuracy on the WikiTableQuestions dataset, while the best ensemble of our models pushes the state-of-the-art score on this task to 38.7%, thus slightly surpassing both the engineered feature scoring baseline, as well as the Neural Programmer model of [Neelakantan et al., 2016].

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube