Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Approximating the Frequency Response of Contractive Systems (1702.06576v1)

Published 21 Feb 2017 in cs.SY

Abstract: We consider contractive systems whose trajectories evolve on a compact and convex state-space. It is well-known that if the time-varying vector field of the system is periodic then the system admits a unique globally asymptotically stable periodic solution. Obtaining explicit information on this periodic solution and its dependence on various parameters is important both theoretically and in numerous applications. We develop an approach for approximating such a periodic trajectory using the periodic trajectory of a simpler system (e.g. an LTI system). Our approximation includes an error bound that is based on the input-to-state stability property of contractive systems. We show that in some cases this error bound can be computed explicitly. We also use the bound to derive a new theoretical result, namely, that a contractive system with an additive periodic input behaves like a low pass filter. We demonstrate our results using several examples from systems biology.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.