Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Attention-Based Deep Net for Learning to Rank (1702.06106v3)

Published 20 Feb 2017 in cs.LG

Abstract: In information retrieval, learning to rank constructs a machine-based ranking model which given a query, sorts the search results by their degree of relevance or importance to the query. Neural networks have been successfully applied to this problem, and in this paper, we propose an attention-based deep neural network which better incorporates different embeddings of the queries and search results with an attention-based mechanism. This model also applies a decoder mechanism to learn the ranks of the search results in a listwise fashion. The embeddings are trained with convolutional neural networks or the word2vec model. We demonstrate the performance of this model with image retrieval and text querying data sets.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.