Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Non-Discriminatory Predictors (1702.06081v3)

Published 20 Feb 2017 in cs.LG

Abstract: We consider learning a predictor which is non-discriminatory with respect to a "protected attribute" according to the notion of "equalized odds" proposed by Hardt et al. [2016]. We study the problem of learning such a non-discriminatory predictor from a finite training set, both statistically and computationally. We show that a post-hoc correction approach, as suggested by Hardt et al, can be highly suboptimal, present a nearly-optimal statistical procedure, argue that the associated computational problem is intractable, and suggest a second moment relaxation of the non-discrimination definition for which learning is tractable.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.