Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improving Localization Accuracy in Connected Vehicle Networks Using Rao-Blackwellized Particle Filters: Theory, Simulations, and Experiments (1702.05792v2)

Published 19 Feb 2017 in cs.SY

Abstract: A crucial function for automated vehicle technologies is accurate localization. Lane-level accuracy is not readily available from low-cost Global Navigation Satellite System (GNSS) receivers because of factors such as multipath error and atmospheric bias. Approaches such as Differential GNSS can improve localization accuracy, but usually require investment in expensive base stations. Connected vehicle technologies provide an alternative approach to improving the localization accuracy. It will be shown in this paper that localization accuracy can be enhanced using crude GNSS measurements from a group of connected vehicles, by matching their locations to a digital map. A Rao-Blackwellized particle filter (RBPF) is used to jointly estimate the common biases of the pseudo-ranges and the vehicle positions. Multipath biases, which introduce receiver-specific (non-common) error, are mitigated by a multi-hypothesis detection-rejection approach. The temporal correlation of the estimations is exploited through the prediction-update process. The proposed approach is compared to existing methods using both simulations and experimental results. It was found that the proposed algorithm can eliminate the common biases and reduce the localization error to below 1 meter under open sky conditions.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.