Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Reproducing and learning new algebraic operations on word embeddings using genetic programming (1702.05624v1)

Published 18 Feb 2017 in cs.CL

Abstract: Word-vector representations associate a high dimensional real-vector to every word from a corpus. Recently, neural-network based methods have been proposed for learning this representation from large corpora. This type of word-to-vector embedding is able to keep, in the learned vector space, some of the syntactic and semantic relationships present in the original word corpus. This, in turn, serves to address different types of language classification tasks by doing algebraic operations defined on the vectors. The general practice is to assume that the semantic relationships between the words can be inferred by the application of a-priori specified algebraic operations. Our general goal in this paper is to show that it is possible to learn methods for word composition in semantic spaces. Instead of expressing the compositional method as an algebraic operation, we will encode it as a program, which can be linear, nonlinear, or involve more intricate expressions. More remarkably, this program will be evolved from a set of initial random programs by means of genetic programming (GP). We show that our method is able to reproduce the same behavior as human-designed algebraic operators. Using a word analogy task as benchmark, we also show that GP-generated programs are able to obtain accuracy values above those produced by the commonly used human-designed rule for algebraic manipulation of word vectors. Finally, we show the robustness of our approach by executing the evolved programs on the word2vec GoogleNews vectors, learned over 3 billion running words, and assessing their accuracy in the same word analogy task.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)